Lecture 10 - geometric invariant theory

Tuesday, October 04, 2016 2:36 PM

Main goal: cook up something close to a quotient space

X -> X universal for maps to alg. spaces

Definition 4.1. We say that $\phi: \mathcal{X} \to Y$ is a good moduli space if the following properties are satisfied:

- (i) ϕ is cohomologically affine.
- (ii) The natural map $\mathcal{O}_Y \xrightarrow{\sim} \phi_* \mathcal{O}_{\mathcal{X}}$ is an isomorphism.

Simple looking definition, main properties

Main Properties. If $\phi: \mathcal{X} \to Y$ is a good moduli space, then:

- (1) ϕ is surjective and universally closed (in particular, Y has the quotient topology).
- (2) Two geometric points x_1 and $x_2 \in \mathcal{X}(k)$ are identified in Y if and only if their closures $\{x_1\}$ and $\{x_2\}$ in $\mathcal{X} \times_{\mathbb{Z}} k$ intersect.
- (3) If $Y' \to Y$ is any morphism of algebraic spaces, then $\phi_{Y'} : \mathcal{X} \times_Y Y' \to Y'$ is a good moduli space.
- (4) If \mathcal{X} is locally noetherian, then ϕ is universal for maps to algebraic spaces.
- (5) If \mathcal{X} is finite type over an excellent scheme S, then Y is finite type over S.
- (6) If \mathcal{X} is locally noetherian, a vector bundle \mathcal{F} on \mathcal{X} is the pullback of a vector bundle on Y if and only if for every geometric point x: Spec $k \to \mathcal{X}$ with closed image, the G_x -representation $\mathcal{F} \otimes k$ is trivial.

(Alper 108)

The main example is G linearly reductive,

R affine

Spec (R)/_ Spec(RG)

Spec (R)/G -> Spec (RG)

In Fact, this is a local model in great generality

E.a. quotient stack whose good moduli space is a scheme scheme form

Theorem 1.2. Let X be a quasi-separated algebraic stack, locally of finite type over an algebraically closed field k, with affine stabilizers. Let $x \in X(k)$ be a point and $H \subseteq G_x$ be a subgroup scheme of the stabilizer such that H is linearly reductive and G_x/H is smooth (resp. étale). Then there exists an affine scheme Spec A with an action of H, a k-point $w \in \operatorname{Spec} A$ fixed by H, and a smooth (resp. étale) morphism

$$f: ([\operatorname{Spec} A/H], w) \to (\mathfrak{X}, x)$$

such that $BH \cong f^{-1}(BG_x)$; in particular, f induces the given inclusion $H \to G_x$ on stabilizer group schemes at w. In addition, if X has affine diagonal, then the morphism f can be arranged to be affine.

Theorem 2.9. Let X be a locally noetherian algebraic stack over k. Suppose there exists a good moduli space X such that the moduli map $\pi : X \to X$ is of finite type with affine diagonal. If $x \in X(k)$ is a closed point, then there exists an affine scheme Spec A with an action of G_x and a cartesian diagram

$$[\operatorname{Spec} A/G_x] \longrightarrow \mathfrak{X}$$
 $\downarrow \qquad \qquad \downarrow \pi$
 $\operatorname{Spec} A/\!\!/ G_x \longrightarrow X$

such that Spec $A/\!\!/ G_x \to X$ is an étale neighborhood of $\pi(x)$.

This leads to a Strategy For constructing spaces

we cover by affine quotient stacks!